Crea sito

Un nuovo paradigma sull’Universo delle origini

Alcuni ricercatori della Penn State University hanno sviluppato un modello che tenta di spiegare le fasi iniziali della storia dell’Universo. Grazie a tecniche moderne che si basano sul cosiddetto modello cosmologico della teoria quantistica a loop (loop-quantum cosmology), gli scienziati hanno esteso i concetti della fisica quantistica fin quasi “all’inizio del tempo”. Questo paradigma della teoria quantistica a loop suggerisce, per la prima volta, che le strutture su larga scala che vediamo oggi come galassie o ammassi di galassie si sono originate a partire dalle fluttuazioni quantistiche iniziali emerse nello spaziotempo ed esistite sin già da quando si originò l’Universo quasi 14 miliardi di anni fa. Questi risultati forniscono nuove opportunità osservative che serviranno per verificare i vari modelli cosmologici grazie alle future missioni spaziali che vedranno impiegati i telescopi di ultima generazione.

“Noi umani da sempre cerchiamo di comprendere come si è originato il nostro Universo”,  spiega Abhay Ashtekar. “Stiamo usando il nostro paradigma per capire, in dettaglio, i processi dinamici che la materia e lo spazio subirono durante le fasi primordiali della storia cosmica, fino all’inizio di tutto”. Il paradigma quantistico fornisce un nuovo sistema concettuale e matematico al fine di descrivere la geometria esotica da cui emerse lo spaziotempo e che possiamo descrivere applicando le leggi della meccanica quantistica. Questo modello suggerisce che l’Universo era così compresso fino a raggiungere valori di densità tali che il suo comportamento non può essere descritto né dalle equazioni della relatività generale di Einstein né da una teoria ancora più fondamentale che si basa sulle strani leggi della meccanica quantistica. Si calcola che la densità della materia poteva raggiungere valori dell’ordine di 1094 grammi per centimetro cubico contro la densità di un nucleo atomico che è di 1014 grammi. Nel mondo bizzarro della meccanica quantistica, dove si parla di probabilità piuttosto che di certezza, le proprietà fisiche sono decisamente diverse da quelle del mondo a cui siamo abituati. Tra queste differenze esistono i concetti di tempo così come le proprietà dinamiche di vari sistemi che evolvono nel corso del tempo man mano che interagiscono con la struttura dello spaziotempo quantistico. Oggi, l’informazione più antica che disponiamo della storia cosmica ci viene fornita dalla radiazione cosmica di fondo e risale a quando l’Universo aveva una età di appena 380 mila anni. Da quell’epoca, dopo un periodo di rapida espansione, chiamata inflazione, l’Universo è divenuto molto più fluido rispetto alla sua versione iniziale super compressa. All’inizio della fase inflazionistica, la densità dell’Universo era un trilione di volte inferiore rispetto a quella del periodo delle origini, così che le fluttuazioni quantistiche sono molto meno importanti oggi nel determinare le proprietà dinamiche della materia e della geometria dello spaziotempo su larga scala. Le osservazioni della radiazione cosmica di fondo mostrano che l’Universo è uniforme su larga scala, eccetto per alcune regioni dello spazio che sono più o meno dense. Il modello standard inflazionistico, che si basa sulle equazioni classiche della relatività generale, tratta lo spaziotempo come un continuo regolare. “Il modello inflazionario spiega con successo la radiazione cosmica di fondo, ma questo modello non è completo. Esso si basa sull’idea che l’Universo emerse dal nulla in seguito ad una singolarità iniziale, il Big Bang, che risulta dall’incapacità della relatività generale nel descrivere le condizioni estreme della meccanica quantistica”, spiega Ivan Agullo. “Abbiamo bisogno di una teoria quantistica della gravità, come ad esempio la teoria quantistica a loop, per andare oltre la fisica di Einstein, al fine di catturare la vera essenza dell’origine del nostro Universo”. Alcuni lavori precedenti sulla cosmologia quantistica a loop eseguiti dal gruppo di Ashtekar hanno modificato, per così dire, il concetto del Big Bang con l’idea del Big Bounce in base alla quale l’Universo non emerse dal nulla bensì da materia super compressa che sarebbe già esistita ancora prima. Dunque, anche se le condizioni della meccanica quantistica all’inizio del tempo furono estremamente differenti da quelle descritte dalla fisica classica dopo l’inflazione, il nuovo paradigma introdotto dai fisici della Penn State University permette di rivelare una connessione sorprendente tra i due modelli che tentano di descrivere queste fasi primordiali. Nel momento in cui gli scienziati utilizzano il modello dell’inflazione applicando le equazioni di Einstein per descrivere l’evoluzione dell’Universo, essi trovano che le irregolarità diventano quei “siti cosmici” da cui sono emersi gli ammassi di galassie e le strutture su larga scala che osserviamo oggi. Ma in maniera quasi spettacolare si trova che utilizzando il modello cosmologico quantistico a loop, con le sue relative equazioni, le fluttuazioni fondamentali nel momento del Big Bounce evolvono per divenire, nel corso del tempo, ancora quei siti cosmici che si osservano nella radiazione cosmica di fondo. Insomma, i dati dei ricercatori della Penn State suggeriscono che le condizioni iniziali relative alle fasi primordiali dell’Universo portano in maniera naturale alla nascita delle strutture su larga scala che osserviamo oggi. In questo modo, i ricercatori possono descrivere l’origine delle strutture cosmiche del nostro Universo dall’epoca inflazionaria al Big Bounce, coprendo circa 11 ordini di grandezza in termini di densità di materia e della curvatura dello spaziotempo. In altre parole, si definiscono meglio quelle condizioni iniziali che sarebbero esistite durante l’origine dell’Universo che hanno portato successivamente alla formazione delle strutture cosmologiche in accordo con i dati sulla radiazione cosmica di fondo.

[Press release: The Beginning of Everything: A New Paradigm Shift for the Infant Universe]

arXiv 1: An Extension of the Quantum Theory of Cosmological Perturbations to the Planck Era

arXiv 2: A Quantum Gravity Extension of the Inflationary Scenario

arXiv 3: Perturbations in loop quantum cosmology

arXiv 4: Probability of Inflation in Loop Quantum Cosmology

arXiv 5: The Big Bang and the Quantum

Argomenti correlati

ammassi di galassie | big bang | big bounce | galassie | inflazione | loop quantum cosmology | loop quantum gravity | meccanica quantistica | radiazione cosmica di fondo | relatività generale | struttura su larga scala universo

Post correlati

Ti può anche interessare ...